Improved Variable Selection with Forward - Lasso Adaptive Shrinkage

نویسندگان

  • PETER RADCHENKO
  • GARETH M. JAMES
چکیده

Recently, considerable interest has focused on variable selection methods in regression situations where the number of predictors, p, is large relative to the number of observations, n. Two commonly applied variable selection approaches are the Lasso, which computes highly shrunk regression coefficients, and Forward Selection, which uses no shrinkage. We propose a new approach, “Forward-Lasso Adaptive SHrinkage” (FLASH), which includes the Lasso and Forward Selection as special cases, and can be used in both the linear regression and the Generalized Linear Model domains. As with the Lasso and Forward Selection, FLASH iteratively adds one variable to the model in a hierarchical fashion but, unlike these methods, at each step adjusts the level of shrinkage so as to optimize the selection of the next variable. We first present FLASH in the linear regression setting and show that it can be fitted using a variant of the computationally efficient LARS algorithm. Then, we extend FLASH to the GLM domain and demonstrate, through numerous simulations and real world data sets, as well as some theoretical analysis, that FLASH generally outperforms many competing approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forward-LASSO with Adaptive Shrinkage

Both classical Forward Selection and the more modern Lasso provide computationally feasible methods for performing variable selection in high dimensional regression problems involving many predictors. We note that although the Lasso is the solution to an optimization problem while Forward Selection is purely algorithmic, the two methods turn out to operate in surprisingly similar fashions. Our ...

متن کامل

Shrinkage estimation and variable selection in multiple regression models with random coefficient autoregressive errors

In this paper, we consider improved estimation strategies for the parameter vector in multiple regression models with first-order random coefficient autoregressive errors (RCAR(1)). We propose a shrinkage estimation strategy and implement variable selection methods such as lasso and adaptive lasso strategies. The simulation results reveal that the shrinkage estimators perform better than both l...

متن کامل

Variable Inclusion and Shrinkage Algorithms

The Lasso is a popular and computationally efficient procedure for automatically performing both variable selection and coefficient shrinkage on linear regression models. One limitation of the Lasso is that the same tuning parameter is used for both variable selection and shrinkage. As a result, it typically ends up selecting a model with too many variables to prevent over shrinkage of the regr...

متن کامل

FIRST: Combining forward iterative selection and shrinkage in high dimensional sparse linear regression

We propose a new class of variable selection techniques for regression in high dimensional linear models based on a forward selection version of the LASSO, adaptive LASSO or elastic net, respectively to be called as forward iterative regression and shrinkage technique (FIRST), adaptive FIRST and elastic FIRST. These methods seem to work effectively for extremely sparse high dimensional linear m...

متن کامل

Robust Regression through the Huber’s criterion and adaptive lasso penalty

The Huber’s Criterion is a useful method for robust regression. The adaptive least absolute shrinkage and selection operator (lasso) is a popular technique for simultaneous estimation and variable selection. The adaptive weights in the adaptive lasso allow to have the oracle properties. In this paper we propose to combine the Huber’s criterion and adaptive penalty as lasso. This regression tech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011